

INTELLIGENT PROCESS CONTROL FOR THE WASTEWATER INDUSTRY

BioCycle™ Success Story — 49%+ Energy Reduction Plum Island WWTP, 36 MGD, Charleston SC

Project Details

- BioCycle[™] algorithm uses real-time process probe data to alternate between aerobic and anoxic cycles
- BioMix[™] provides mixing during anoxic cycle
- Fine bubble diffusers provide aeration during aerobic cycle
- BioCycle demonstrated
 49%+ power savings versus
 nitrification only operation
- System maximizes energy savings and optimizes effluent quality

BioMix tank installation at Plum Island WWTP, Charleston, SC

Facility Summary

- Treatment process includes nine parallel complete-mix activated sludge treatment reactors: Side A (Tanks 1-6) and Side B (Tanks 7-9). Each is 72' wide by 74' long with 18.5' side water depth
- Discharges into the Charleston Harbor, an important recreational and commercial waterway

Operation of a BioCycle[™] installation at the 36 MGD Plum Island WWTP in Charleston, SC, provided a reduction in blower demand of 49.9% while maintaining effluent quality and also decreasing total nitrogen concentrations. The BioCycle control system utilizes BioMix[™] compressed gas ("large bubble") mixing, fine bubble aeration, and in-basin process probes to cycle between aerobic and anoxic conditions in the complete mix activated sludge biological reactors.

In early 2011, BioMix was installed in Tanks 8 and 9 of Side B between the aeration diffusers to allow for anoxic mixing periods. The innovative BioCycle system monitors multiple process variables, such as oxidation reduction potential (ORP), dissolved oxygen (DO), nitrate (NO₃-N), and ammonium (NH₄-N), to determine optimal aeration and mixing period lengths. During the aeration phase, DO is controlled at approximately 2.5 mg/L. When the aeration period ends and the BioMix system is turned on, the NO₃-N concentration is reduced to approximately 1 mg/L. Side B blower operation and power were minimized while producing effluent quality with a total nitrogen concentration less than that of Side A.

Figure 1 presents process data identifying DO in blue, NO_3 -N in red, and ORP in yellow. Each aerobic-anoxic cycle period is \pm 4 hours.

Demonstrated Results

The air into the two operating Side B reactors utilizing BioCycle was compared to that of the four operating Side A tanks. The significant 49.9% reduction in air consumed (see Figure 2) equates to a facility-wide savings of \$176,000 per year.

	Total Process Average Daily Air Volume	A-Side, Average Daily Air Volume	B-Side, Average Daily Air Volume	B-Side Average Daily Air Volume as % of A-Side Average Daily Air Volume	Theoretical B- Side Average Daily Air Volume without BioCycle (A-Side x 24.8%)	B-Side % Reduction
03/01/2011 to 03/15/2011 without BioCycle (ft ³ /d)	17,360,402	13,906,007	3,454,395	24.8%		
05/01/2011 to 05/31/2011 using BioCycle (ft ³ /d)	22,841,436	20,319,152	2,522,284	12.4%	5,039,150	49.9%
Figure 2						